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Abstract 

Reliability-confidence combinations for small-sample, no-fail tests of aerospace 
ordnance items are considered in some detail. Analyses epitomized by the widely 
used, but sometimes misapplied, equation 

are shown to provide unexpectedly good approximations. Component reliabilities 
corresponding to confidences of the order of 70%, as based on tests by attributes, 
are shown to be satisfactory for calculation of simple series and parallel system 
reliabilities; it is suggested that 70% confidence levels may also be a good choice 
for tests by variables. 
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Reliability-Confidence Combinations for Small-Sample 
Tests of Aerospace Ordnance Items 

1. Introduction 
For a complex aerospace system to have even a 50% 

chance of performing its intended function, the chances 
of failure in any one critical subsystem component must 
be extremely Iow. 

In the evaluation of the reliability of aerospace ord- 
nance componmts, it is common to find that 

The items are expensive, limiting the number of 
samples available. 

The items are of a special design, with no history 
to suggest their reliability. 

Because the target reliability approaches unity, 
evaluation should be directed at fail rates rather 
than re1iability.l 

The items to be tested are “single-shot” and, unlike 
solenoid relays for example, cannot be operated 
nondestructively; items operated in test cannot be 
used in flight. 

‘A decrease of less than 1% in reliability, from 99.9% to 99%, would 
represent a tenfold increase in fail rate ( i.e., from Xooo to %oo 1. 

Tests by both attributes and variables may be 
appropriate, but the frequency distribution for tests 
by variables is unknown.2 

There is some uncertainty (if not confusion) in the 
selection of a reliability-confidence combination 
that best expresses the results of the evaluation. 

Today, evaluation of small-sample aerospace ordnance 
tests follows along lines developed in the 1920s by 
Western Electric and Bell Telephone engineers3 as char- 
acterized by the equation 

‘Log-normal or comparable distributions are often assumed simply 
as a convenient economy. Although actual test results involving 
only small samples may prove to be consistent with some arbitrary 
distribution, use of such a preselected distribution for extrapolation 
to extreme percentiles may be grossly misleading. 
’Dodge, H. F., and Romig, H. G., Sampling Inspection Tables, 
Single and Double Sampling, Second Edition, p. 1. John Wiley & 
Sons, Inc., New York, 1959. 
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where 

n = number of pass/fail tests 

should be expected to pass, or should none be expected 
to pass because none are 100% reliable?5 

F = number of fails detected 

n! ( 7 )  = (n - i)! i! 
R = assumed reliability 

f = assumed fail rate 

y = lower confidence limit on R 
(or upper confidence limit on f )  

Equation (1) reduces, for a series of n tests with no 
 failure^,^ to 

(1 - f)" = R" = 1 - y (2) 

Both equations allow the results of any particular test 
program to be expressed as indicating any of an infinite 
number of reliability-confidence combinations. For ex- 
ample, a five-sample, no-fail test could be interpreted as 
indicating any one of as many combinations as one wished, 
including those shown in Table 1, as calculated from 
Eq. (2). 

Table 1. Some reliability-confidence combinations 
for a five-sample, no-fail testa 

Reliability R, X Confidence 7,  X Maximum fail rate f, 5% 

99 
90 
a7 
a0 
70 
60 
50 
40 

5 
41 
50 
67 
03 
92 
97 
99 

1 
10 
1 3  
20 
30 
40 
50 
60 

'Note the rapid rise in confidence for a decreose in reliability from 99% to 
90%. I t  may be shown that, for f-0, log,,, ( 1  - Y )  =: -0.434 nf. 

The question naturally arises as to which combination, 
if any, is the most descriptive. For example, if the five- 
sample test were used to judge the quality of a further six 
items drawn from the same lot, would the 80% reliability- 
67% confidence combination imply that, of the six samples, 
at least five (SO%), or four (67%), or three (80% of 67%), 

'For simplicity, subsequent- discussion is limited to no-fail tests; 
these are of particular interest in aerospace ordnance because the 
number of samples available for test is usually so small that even 
one failure may imply an intolerably high fail rate. 

Before proceeding, it is important to note the original 
problem faced by the Western Electric and Bell Tele- 
phone engineers was how to use small samples to deter- 
mine whether a particular incoming shipment of 
components met a quality level which prior shipments 
had shown to be practical. If earlier shipments had ex- 
hibited a reliability of %% or better, with an occasional 
bad lot having a reliability as low, for example, as 80%, 
the customer might be content with a small-sample 
receiving inspection scheme that gave him a good chance 
of detecting lots with a reliability of less than 98%. By 
comparison, many aerospace ordnance items involve short- 
run, one-time production offering no prior history on 
which to base an expected reliability; this raises the 
further question of whether Eq. (2) is grossly inappro- 
priate in such cases. 

I I .  Inherent Reliability of 'No-History' Lots 

At first glance, it might seem that evaluation of a lot for 
which all fail rates between 0% and 100% were equally 
likely would be a much more pessimistic process than 
evaluation of a lot for which fail rates below, say, 70% 
were assumed to be somewhat unlikely. This is not so, 
however, because small-sample, no-fail tests quickly cull 
(or "screen") high fail-rate lots (see Appendix B). 

If an n-sample test is made on a large number K of lots 
of size L for which all proportions p of passes P between 
0 and 1 are equally likely, the chances C of any lot yield- 
ing a sample of n Ps is given by6 

c = p" (3) 

and the number of lots M that will yield such samples 
is given by 

M =I' K C d p  =i' K p n d p  

'Although Eqs. (1 )  and (2 )  relate to tests by attributes, reliability- 
confidence combinations are also used to express the outcome of 
tests by variables, giving rise to the same question. 

"Equation (3)  is true only if samples are returned to the lot as 
drawn, or if the sample size n is so small by comparison with the 
lot size L that the removal of the sample has no significant effect 
on the proportion p of P's remaining. 
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from which 

Reliability 
R“ 

K 
n + l  

M=- 
Most likely 

Confidence maximum Approximate chances of 
fail rate indicated fail rate’ 
(1 - R) 

yb 

(4) 

The proportion Ri of P’s in these M lots representing 
their average quality or “inherent reliability” is given by 

1 1  KL 1 -  n + l  Ri = ml KLp” p d p  = - X- -- ML n + 2  n t 2  

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 

0 
0.61 3 
0.864 
0.959 
0,9897 
0.9980 
0.9997 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0 
(0.61 3-0) = 0.6 1 

(0.864-0.61 3 )  = 0.25 
(0.959-0.864) = 0.1 0 

(0.9897-0.959) = 0.03 
(0.9980-0.9897) = 0.008 
(0.9997-0.9980) = 0.002 

and the proportion y of the M lots that will have at least 
any proportion R of P’s is given by 

y = (n t l)!’ p n d p  
R 

from which 

Note the similarity between Eq. (2) and Eq. (6). Equa- 
tion (6) shows that an isolated lot yielding no fails in a 
sample of size n will have (with coddence 7) a compara- 
tively high reliability even if, prior to sampling, all relia- 
bilities between 0 and 1 were considered equally likely. It 
can be shown that although the inherent reliability ap- 
proaches 1 as n approaches 00, the corresponding y con- 
verges on only 1 - e-lm (= 63.22%). 

Although Eq. (2) would not be strictly applicable to 
the case under consideration, its misuse would still give 
a good approximation, i.e., 

aThe inherent reliability of Eq. (5) is 0.9. 
bCalculoted from Eq. (6).  
=These chances relate strictly to ranges of fail rates, but are more easily visu- 
alized as relating to fails in a lot of size 10. 

From Table 2, an expectation that the fail rate would 
be 1/10 or less would result in a 25% chance of being 
disappointed by a factor of 2, and a 10% chance of being 
disappointed by a factor of 3. In a manufacturing process 
(such as assembly of radio receivers), inadvertent ac- 
ceptance of one lot in four of components (such as capaci- 
tors) with a fail rate twice “normal,” or of one lot in ten 
with a fail rate three times “normal,” might be coun- 
tered by replacement of faulty items when the assembly 
failed to meet final tests: low confidence in component 
reliability might not necessarily be reflected in the re- 
liability of the manufactured system, but would almost 
certainly be reflected in the cost of “rework” during 
manufacture. In such a case, the selection of the optimum 
reIiability-confidence combination would involve trade- 
offs between the costs of additional acceptance testing, 
on the one hand, with the costs of rework, on the other. 

In aerospace ordnance systems, however, faulty sub- 
components may not be detectable by “final inspection” 
of a system, and low confidence in component reliability 
may consequently manifest itself in low system reliability. 

IV. ,Reliability-Confidence Combinations 
111. Confidence and Unexpected Fail Rates 

no fails in of size will a proportion For a simple series system (such as a chain of links) 
Although a proportion y = 1 - R”+l of lots yielding 

(1 - R)  = l/(n + 2) or less of faulty items, the remain- 
ing fraction ~ n +  1 of the lots will contain a propofion of 

come fail rates which may be unexpected and possibly 

where 
system reliability 

each of pass rate ?‘ are used, the 
is a probability given by 

faulty items larger than l/(n + 2); from these lots will 

disappointing. For example, from an eight-sample, no-fail 
draw, the probability of various fail rates can be illus- 
trated as in Table 2. 

R, = p N  (7) 

Similarly, for a simple parallel system (such as a raft 
made from oil drums) where N components of pass rate p 
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are used and inclusion of one faulty item is. tolerable, the 
system reliability Rp is a probability given by 

In Appendix A, it is also shown that R corresponding 
to a confidence of about 63.2% can provide a useful 
approximation if substituted in Eq. (l l) ,  and that R cor- 
responding to a confidence of about 75.7% can provide 
a useful approximation if substituted in Eq. (12). How- 
ever, the component might be used in either a series or a 
parallel system; Table 3 illustrates that use of reliabilities 

Rp = p N  + N N - l  p (1  - P )  

= N:-' - ( N  - 1) p N  (8) 

When the reliability R but not the true pass rate p of 
components in series or parallel systems is known, it is 
common practice to substitute R for p in equations such 
as Eqs. (7) and (8), often using component reliabilities 
calculated to an arbitrary confidence. For any given sys- 
tem, the system reliability so calculated will obviously 
depend on the confidence associated with the component 
reliabilities; it is system reliabilities qualified by confi- 
dence that are often difficult to interpret. 

calculated to a 70% confidence level (as a compromise 
between 63.2% and 757% ) provides reasonable approxi- 
mations not only for series systems, but also for parallel 
systems, at least over a wide range of practical situations. 
This table relates to tests by attributes; although the 
comparable situation for tests by variables has not been 
explored, it seems likely that component reliabilities ex- 
pressed at a 70% confidence level as the result of tests 
by variables might also compound to yield fair approxi- 
mations for certain series and parallel systems. 

Although small-sample tests do not allow determina- 
tion of the true pass rate p ,  in Appendix A it is shown 
that a no-fail test of n samples allows calculation of the 
system reliabilities of Eqs. (7) and (8) as follows: 

n + l  
N + n + 1  R, = 

n + l  2N + n R - -  '- N + n  N + n + l  

(9) 

Even though no-fail tests by attributes thus allow calcu- 
lation of the probability of success of a system without 
expressing the quality of the components in the form of 
a reliability-confidence combination, it may nevertheless 
be of interest to consider the practicality of substituting 
some such reliability for p in Eqs. (7) and (8) to yield 
useful approximations for R, and Rp as calculated by 
Eqs. (9) and (10). In essence, the problem is to find some 
value of R which will satisfy the relationships 

n + l  
N + n + 1  

R, = R N  

On the other hand, Table 3 shows that system relia- 
bilities calculated from component reliabilities based on 
small-sample tests are, at best, only approximations; if the 
true (most likely) pass rate of a system can be calculated 
from no-fail tests by attributes, why then resort to ex- 
pressing component reliabilities at some arbitrary confi- 
dence level? The answer to this question lies in the 
following : 

( 1 )  All calculated pass rates are subject to error arising 
from the assumed distribution. The equations of 
this report are based on the assumption that the lot 
selected for sampling and use is one of an infinite 
number of lots for which all fail rates are equally 
likely; if another distribution prevailed, the dis- 
crepancies of Table 3 might prove relatively in- 
significant. 

(2)  The results of small-sample tests by variables are 
probably most easily expressed in terms of relia- 
bility demonstrated at a particular confidence level; 
while this situation prevails it seems undesirable 
to use a different form of expression for tests by 
attributes. 

n + l  2N + n Rp = NRN-1 - ( N  - l )RN = - + X + + V. Compounding Subsystem Reliabilities 

p2)  It has been shown that, under certain circumstances, 
the reliability of a system can be expressed as (or approxi- 
mated by) a true pass rate; if such a system is a (series) 
subsystem in a larger system for which no subsystem 
failures are tolerable, the reliability (or pass rate) of the 
whole system Rt will be the product of the reliabilities 
(pass rates) of the various subsystems R. In the simple 

Any such value of R should be substantially independent 
of N to cover the common situation in which the nature 
of the system is unknown by those conducting the small- 
sample test. 
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r- 
Number 

of 
samples 

in 
no-fail 

tes! 

(4 

0.669 
0.740 
0.706 
0.075 
0.096 
0.9443 
0.971 1 
0.9052 
0.9002 
0.9940 
0.9970 
0.990ao 
0.99940 
0.99970 
0.99900 

2 
3 
4 
0 

10 
20 
40 
00 

100 
200 
400 

1000 
2000 
4000 

10000 

1 - R8 

0.40 
0.33 
0.29 
0.1 0 
0.1 5 
0.007 
0.047 
0.024 
0.01 9 
0.0099 
0.0050 
0.0020 
0.001 0 
0.00050 
0.00020 

Table 3. Effect of using component reliabilities corresponding to y = 70% for calculation of reliability 
of systems compounded of items drawn from the one lot" 

True system pass rate: R8 = True system pass rate: Rp = 

= (1 - 0.70)1/1fi+*' 

= 0.30 I/@ +'I 

l - R g l - f i ( R )  

0.40 0.67 
0.32 0.44 
0.20 0.25 
0.1 1 0.14 
0.090 0.1 12 
0.047 0.058 
0.024 0.030 
0.0099 0.012 
0.0050 0.0060 
0.0025 0.0030 
0.001 0 0.001 2 

I - R  

0.50 
0.33 
0.20 
0.091 
0.040 
0.024 
0.009' 

1 - fi (R) 

0.55 
0.45 
0.38 
0.23 
0.20 
0.1 00 
0.057 
0.029 
0.024 
0.01 2 
0.0060 
0.0024 
0.001 2 
0.00060 
0.00024 

I - %  l - f z ( R )  

0.1 00 0.1 09 
0.067 0.060 
0.048 0.046 
0.01 0 0.01 6 
0.01 3 0.01 1 
0.0040 0.0031 
0.001 1 0.00084 
0.00029 0.00022 
0.000 1 9 0.0001 4 
0.000049 0.000036 

1 - R p  

0.49 
0.43 
0.26 
0.21 
0.097 
0.035 
0.01 1 
0.0074 
0.0020 
0.00053 

- fi (R) 

0.70 
0.45 
0.26 
0.1 1 
0.050 
0.030 
0.01 2 I I 

1 - fz (R) 

0.70 
0.66 
0.36 
0.20 
0.1 04 
0.032 
0.0091 
0.0059 
0.00 1 6 
0.00040 
0.000065 

'Calculated failure rates (1  - R), rather than calculated reliabilities (R) have been tabulated for eoso of comparison. Thus, from the table, for a series system of 10 units com- ( (0.4072..321 ) 
pounded from a lot which had yielded no fails in a sample of 20, 1 - R'O with R calculated for 7 ~ 7 0 %  would yield a maximum fail rote of 0.44. 37% 

higher than the likely (true) fail rate. 

i.e.. 

case where n subsystems of equal reliability R are in- 
volved, 

Rt R" 

Although Rt and R are both pure pass rates without a 
qualifying confidence level, the qualities of both the 
system and subsystems are possibly easier to understand 
as confidences (in 100% reliability) than as reliabilities 
(at 100% confidence). 

VI. Tests by Attributes vs Tests by Variables 

Present-day qualification tests for aerospace ordnance 
items are, more often than not, based on tests by at- 
tributes-a carry-over from typical qualification tests for 
military ordnance items. Unlike aerospace ordnance items, 
many military items involve long production runs with 
fixed tooling, are not likely to be used as critical elements 
in a complex and expensive system, and can be recalled 
if intolerable failure rates are detected in service; al- 
though qualification to a reliability of possibly 95% might 
be acceptable for a military cartridge, the different cir- 

cumstances might make qualification to a reliability of 
99.9% more appropriate for the aerospace counterpart of 
this same cartridge. 

Qualification by attribute-testing to a 99.9% reliability 
requirement (at a 70% confidence level) would call for 
a minimum of about 1200 samples for each type of 
destructive test-a quantity which would be economically 
prohibitive in many cases. 

Provided one is prepared to assume an ar%itrary dis- 
tribution (such as the log-normal) and can devise appro- 
priate tests, qualification by use of tests by variables 
may, by contrast, allow use of a practical minimum of 
only about six samples. 

Although use of tests by variables is consequently 
attractive (if not unavoidable) for qualification of aero- 
space ordnance items, until the problem of reliability- 
confidence combinations for such tests has been solved, 
the only practical course seems to be to adopt the 70% 
confidence level which appears appropriate for tests by 
attributes. 
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VII. Conclusions of the results of no-fail tests by attributes, without 
reference to a confidence, but is possibly easiest 
understood if described as a confidence (in 100% 
reliability). 

If, prior to testing, it is agreed that the lot of items is 
one of many for which all fail rates between 0 and 1 are 
equally likely 

Analysis of test results by methods epitomized by 
the equation 

y = l - R R n  

can continue to be used without introducing serious 
errors. 
Samples of size n that yield no failures belong to 
families of lots having an inherent reliability 

with a confidence y = 1 - Rn+I. 
The true pass rate of a simple series or parallel 
system or subsystem can be calculated on the basis 

(4) Component reliabilities expressed at a 70% confi- 
dence level as the result of no-fail tests by attributes 
may be compounded to yield fair approximations 
to pass rates for simple series and parallel systems, 
at least over a wide range of practical situations. It 
seems reasonable to assume that the results of tests 
by variables expressed as reliabilities at a confi- 
dence of 70% could also be compounded to yield 
fair approximations to the pass rates of such systems. 

(5) Although confidence levels of about 70% appear 
appropriate in calculation of system or subsystem 
reliabilities, higher or lower confidence levels may 
be more appropriate from some economic stand- 
point. 
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Appendix A 

n 

- n + l  
n f 2  

R for 63.2% 

confidence, 
= (14.632)"'""' 

hherent reliability, 

I - -  

Confidence in 

7 = l-RY* 

Reliability of Simple Series and Parallel Systems Based on a No-Fail Small-Sample 
Test of the lot From Which the Components Are Drawn 

~ 

4 7 15 80 2 

0.75 0.833 0.889 0.941 0.988 

0.717 0.819 0.883 0.939 0.988 

0.58 0.60 0.61 0.62 0.63 

Let 

R, = reliability of a simple series system (e.g., a 
chain of links) in which no faulty components 
are tolerable 

R, = reliability of a simple parallel system (e.g., a 
raft of empty oil drums) in which not more 
than one faulty component is tolerable 

n = number of samples (chain links or oil drums) 
in a no-fail test of the lot from which the sys- 
tem is compounded 

N = number of components in the system 

p = true pass rate of the components 

Ri = inherent reliability of the components (n + 1)/ 
(n + 2) 

,, = 1 - Rn+1 = Confidence in component relia- 
bility R 

Assume that, prior to sampling, the lot of components 
from which the system is to be compounded is one of a 
large number of lots for which all pass rates p between 
zero and one are equally likely. 

1. Series Systems 

The proportion of lots which will yield n good samples 
in an n-sample test = l / ( n  + l), and of lots which will 
yield n + N good samples in an (n  + N) draw = 
1/(N + n + 1) (see Eq. 4). 

But 

R, = pN 

:. p = ( n + l  )'" = ( 1  - --&YN << n 
N + n + l  

1 n + l  el---- 
n + 1  n + 2  

n >> 1 

Thus, for series systems in which N >> n and n >> 1, the 
inherent reliability of components may be used as a true 
(unqualified) pass rate for calculation of the reliability 
of the system; alternatively, because the confidence for 
inherent reliability converges on 63.2% ,7 the reliability 
corresponding to a confidence of 63.2% could be used as 
the true pass rate. 

I I .  Parallel Systems 

n is given by 
The fraction of lots which will yield n good samples in 

1 
pn d p  = - = F ,  (see Eq. 4) I' n + l  

The fraction of lots which will yield no failures in a 
sample of size ( N  + n)is similarly given by 1/(N+ n+l) = F ,  

'Even for small values of n, the reliability at a codidence of 63.2% 
does not differ markedly from the inherent reliability, nor does the 
con6dence in inherent reliability differ markedly from 63.2%. These 
points are shown by the following: 

The chances of getting N good samples in an N-sample 
draw after having previously drawn no fails in an n-sample 
draw is, consequently, given by 

n + l  
N + n + l  

n + l  .'. R - 
8 -  N + n + l  
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and the fraction of lots which will yield nomore than one 
failure is given by 

I p ( N + n )  + (N + n)pfN+n+l) (1 - PI1 dP I' =I' [ ( N  + n)p(N+n-1) - (N  + n + l ) p ( N + n ) ]  d p  

= F, 2 
N + n + l  

- - 

Thus, a fraction F, - F2 = 1 / (N  + n +1) = F, of lots 
will yield one failure in (N  + n) samples, and of this frac- 
tion a proportion N / ( N  + n) = F, involves no failures in 
the first n samples. 

The proportion of lots Rp which, having yielded n no- 
fail samples, will then yield no more than one failure in 
the next N samples is, therefore, given by 

F,  + F, X F, 
Fi 

Rp = 

N 1 +- 1 
~ + n + l  ~ + n ' ~ + n + l  

n + l  

n + l  2N + n 
N + n X  N + n + 1  

=- 

But 

R, = p N  + N P "-' (1 - P )  

=z NpN-' - (N  - l ) p N  

= N(1 - f)"-' - (N  - 1) (1  - f)" f = 1 - P 

f" N(N - 1) 
2! 

= 1 -  N f  << 1 

- n + 1  2N + n -- 
N + n  N + n + l  

Now 

= 1 - Rn+1 

and for 

R = p  

1 - pn+l = 1 - ( 1  - f)"" 

lw - (n  + 2!  l )  
2 

= (n ' )  [ (N  + n) (N  + n + 1) 

[ ( N : n )  ( N  + n + I ) ]  + 

Which, for n >>N 

2 2 3/2 
~ 21/2 - __ + - 

2! 3 !  
- ... 

i.e., 

1 
4.113 y 1 - g--= 1 - ~ = 75.7% 

Thus, for parallel systems in which one faulty compo- 
nent is tolerable and the number of components N is small 
by comparison with the size n of a no-fail sample (thus 
meeting the requirements that n >> N and Nf < 1)) the com- 
ponent reliability corresponding to a confidence of 75.7% 
could be used as a true (unqualified) pass rate for calcu- 
lation of the reliability of the system. 

The degree of approximation involved in using compo- 
nent reliability corresponding to a 70% confidence (as a 
compromise between the 63.2% appropriate for series 
systems and the 75.7% appropriate for parallel systems) 
is shown in Table 3. 
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Appendix B 
Sifting Effeci of Small Sample No-Fail Tests 

No-fail tests of n samples can be thought of as a sieve, 
separating the better lots from the poorer lots. Suppose 
the lots come in boxes of 100 parts per box, and that a 
warehouse contains 101 million boxes. Suppose further, 
that all pass rates are equally likely. Then, there are a 
million boxes containing no good parts, a million with one, 
a million with 2, . . . , a million with 99 good parts, and 
a million boxes with all 100 parts good. If we knew how 
many good parts were in each box, we could stack all 
those with each number of good parts in a separate pile. 
If these piles were arranged in order of the number of 
good parts, the tops of the piles would look like the upper 
line (n = 0) in Fig. B-1. 

Suppose that one part is taken out of each box and 
tested. Some of the tests will reveal defective parts. When 
this happens, we will remove that box from the stack. 
The probability that we will not remove a box from its 
pile, when all the boxes in that pile have p good parts 
(and 100-p defective parts), is simply p/lOO. Since there 
were a million boxes in the pile there will now be 
(p/lOO) X lo6 boxes left. The tops of the piles would look 
like the line marked n = 1 in Fig. B-1. 

Similarly, if we take a second sample from each box, 
and again throw out the boxes that yielded a defective 
sample, the tops of the piles would look like the line 
marked n = 2. There were (p/lOO) X lo6 boxes in the 
pth pile. Only p/lOO (approximately) of these boxes 
passed the second test, leaving (p/100)2 X lo6 boxes in 
the pth pile. Figure B-1 shows the appearance of the top 
of the stack after several siftings. The number of boxes 
left in the pth pile, after any box yielding a defective 
sample in n samples has been discarded, is (p/lOO)% X lo6. 

What has all this to do with reliability and confidence? 
The sorting in the previous paragraphs can only be done 
conceptually, of course, since the number of good parts 
in each lot (box) is not known to us. Consequently, accept- 
ing a lot after it passes an n-sample no-fail test is like 
taking all the piles that are left, mixing up the boxes, and 
drawing one at random. How many good parts does it 
contain? What is the chance that a system composed of 
parts from this box will work? 

The probability that a part taken from any particular 
box will work is simply the number of good parts in that 

box, p ,  divided by 100. But, by definition, this is the 
reliability of the parts in that box. On drawing a box, 
however, we do not know what this reliability is. We do 
know how many boxes there were with each reliability. 
Consequently, we can state a probability that the reliabil- 
ity of the drawn box is at least R, for any value of R 
between 0 and 1. Again, we note that this probability is, 
by definition, the confidence, y, that the reliability is R. 
The relationship between reliability and confidence re- 
sulting from an n-sample, no-fail sifting sequence applied 
to an initial lot distribution in which all pass rates were 
equally likely (usually a conservative assumption) can be 
easily expressed by dividing the number of boxes with 
an equal or higher reliability than R by the total number 
of boxes left. Thus, 

6' (p/lOO)" X lo6 d p  

1' (p/lOO)% X lo6 dp 
1 - Rn+l y = 

The quantity which we have called inherent reliability is 
the total fraction of good parts in the boxes remaining. 
Since there are p good parts in each box in the pth pile, 
we have 

l' (p/lOo)" X lo6 x p dp - n f l  
n S . 2  

-- R. = l' (p/lOO)" X lo6 d p  

Components, however, are only of interest because we 
wish to combine them to make systems. Immediately, 
we are faced with finding those (y, R) pairs which should 
be chosen to give specified system pass rates. If we con- 
tinue with the assumption that the n-sample, no-fail test 
has been used to preferentially sift an initial population 
in which all pass rates were equally likely, we seek that 
confidence level, y, whose associated reliability, R,, will 
give the same average system pass rate as if Ry were the 
true reliability of the lot used. 

It was shown in Appendix A that the result of this quest 
depends on the logical connection of components in the 
particular system being studied, but that the appropriate 
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Fig. B-1. Number of lots of each reliability after n no-fail tests 
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confidence level ranges from 63 % to 76%. The sugges- 
tion was made in Section V that component reliabilities 
corresponding to a confidence level of 70% may give a 
satisfactory approximation for most uses. 

We have seen in Fig. B-1 that low pass rates are indeed 
rapidly screened out by the small sample no-fail tests. 
Suppose, however, we are concerned with an application 
in which we would consider a 99% reliability to be low. 
Are small sample no-fail tests still useful? By considering 
the fact that 98 samples must be drawn to raise the inher- 

ent reliability to 99%, we see that large samples (i.e., at 
least 98) will be required. 

To fully answer this question, consider Fig. B-2, which 
shows the sifting effect on lots of high-reliability compo- 
nents. This figure shows that relatively large samples 
must still be tested to obtain an appreciable sifting effect 
even if only lots with pass rates exceeding 99% were 
initially present. The implication is that testing by attri- 
butes (go, no-go) is not efficient for demonstration or 
determination of high reliabilities. 

Fig. B-2. Sifting effect on high-reliability lots 
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